Practice Exam 1

Tuesday, February 10, 2015

Instructions

- You have 40 minutes to complete this exam.
- Write on your own paper, not this exam.
- No calculators, phones, books, or collaboration.
- You may not use results not covered yet in class, such as the chain rule, l'Hôpital's rule, or the power rule for non-integer coefficients.
- Fully justify all answers.
- You do not need to simplify your answers unless the problem says otherwise.

Problems (5 problems, front and back)

1. Fill in the blanks:
(a) A function $f(x)$ is continuous at a point a if \qquad .
(b) The derivative of a function $g(x)$ at a point b is \qquad _.
(c) The function $h(x)$ has a horizontal asymptote at $y=c$ if \qquad or \qquad .
(d) The function $j(x)$ has a vertical asymptote at $x=d$ if \qquad or \qquad or \qquad or \qquad .
2. Calculate:
(a) $\lim _{x \rightarrow \infty} 2 \arctan (x)$
(b) $\lim _{x \rightarrow \infty} \frac{x^{2}-4 x+1}{(2 x-1)^{2}}$
3. Calculate:
(a) $\frac{d}{d x}\left[\frac{\sqrt{x}}{x^{2}-1}\right]$
(b) $\frac{d}{d x} 3 e^{x} \sin (x)$
(c) $\frac{d}{d x}\left[\frac{e^{2} \pi-1}{2}\right]$
4. Use the definition of the derivative to calculate the derivative of the function $\frac{4}{2-3 x}$.
5. Consider the function

$$
f(x)= \begin{cases}2 & \text { if your instructor likes the number } x \\ 5 & \text { if your instructor does not like the number } x\end{cases}
$$

Determine the limit

$$
\lim _{x \rightarrow 1^{+}} \frac{f(x)}{x-1}
$$

Justify your answer.

Exam 1 will be held Wednesday, February 11 - that's tomorrow! - from 6 PM - 8 PM in
Lecture Center A1.

Full solutions to this practice exam will be available at http://math.uic.edu/~mclaury this evening. And I have my usual office hours 3 PM - 4 PM today in the MSLC, located in SEO 430. The MSLC is open until 6 PM this evening and will open at 8 AM Wednesday morning.

Discussion classes are cancelled this Thursday.

